โตชิบาเร่งพัฒนาระบบกักเก็บพลังงานไฟฟ้า รองรับการผลิตพลังงานหมุนเวียน

มอเตอร์เครื่องกำเนิดไฟฟ้าปรับความเร็วได้ หมายเลข 4 ณ สถานีพลังงานคาซึโนะกาวะ ประเทศญี่ปุ่น

ไม่ว่าจะเป็นภัยธรรมชาติหรือภาวะโลกร้อนอันเกิดจากพลังงานฟอสซิล มีเหตุผลสำคัญมากมายที่ควรให้เราเร่งเปลี่ยนไปใช้พลังงานหมุนเวียน แต่พลังงานที่ได้จากแสงอาทิตย์หรือแรงลม เป็นแหล่งพลังงานที่มีความผันผวนสูง เอาแน่เอานอนไม่ได้ และแปรเปลี่ยนไปตามกาลเวลา อย่างไรก็ตาม วิธีการหนึ่งที่เชื่อว่าจะสามารถจัดการกับอุปสรรคนี้ได้ก็คือการพัฒนาศักยภาพของเทคโนโลยีกักเก็บพลังงาน

โดยธรรมชาติแล้ว ไฟฟ้าเป็นสสารที่เคลื่อนที่รวดเร็วมากจนสามารถเข้าถึงผู้บริโภคได้ในทันทีที่มันถูกผลิตขึ้น กฎของแอมแปร์ได้อธิบายถึงการเคลื่อนที่ของกระแสไฟฟ้าและความสัมพันธ์ระหว่างสนามแม่เหล็กกับกระแสไฟฟ้าที่ไหลผ่านตัวนำไว้ว่า กระแสไฟฟ้า หมายถึง การแผ่กระจายของคลื่นแม่เหล็กไฟฟ้าซึ่งประกอบด้วยสนามไฟฟ้าและสนามแม่เหล็ก การเคลื่อนที่ของประจุไฟฟ้าทำให้เกิดสนามแม่เหล็ก (หมายถึง บริเวณโดยรอบแม่เหล็ก หรือสิ่งของที่มีคุณสมบัติใกล้เคียงกันที่แม่เหล็กมีอำนาจการดึงดูดไปถึง ส่วนสนามไฟฟ้า หมายถึง บริเวณโดยรอบประจุไฟฟ้า ซึ่งประจุไฟฟ้าสามารถส่งอำนาจไปถึง) และมีการแผ่กระจายสลับกันจากการเปลี่ยนแปลงของกำลังหรือทิศทางของสนามไฟฟ้า สนามแม่เหล็กและสนามไฟฟ้าจึงถูกแผ่กระจายสลับกันเป็นคลื่นแม่เหล็กไฟฟ้า


แบตเตอรี่แบบชาร์จซ้ำ SCiB จากโตชิบา

ทุกวันนี้มีเทคโนโลยีสำหรับการกักเก็บพลังงานไฟฟ้ามากมายหลายรูปแบบที่กำลังได้รับการศึกษาและพัฒนาอย่างต่อเนื่อง โดยมีเป้าหมายหลักเพื่อป้องกันไม่ให้เกิดเหตุไฟฟ้าขัดข้องหรือไฟดับ รวมถึงช่วยผลักดันให้เกิดการใช้พลังงานหมุนเวียนเพิ่มมากขึ้น โดยในที่นี้เราจะกล่าวถึงเพียงสองวิธีคือ โรงไฟฟ้าพลังน้ำแบบสูบกลับ และแบตเตอรี่สำรอง

ปัจจุบันมีการพัฒนาระบบการกักเก็บพลังงานไฟฟ้าหลากหลายวิธี

Advertisement

การกักเก็บพลังงานไฟฟ้าสามารถทำได้หลายวิธี หนึ่งในนั้นคือ การผลิตไฟฟ้าด้วยโรงไฟฟ้าพลังน้ำแบบสูบกลับ (Pumped Hydroelectric Energy Storage: PHES) โดยเมื่อมีการผลิตกระแสไฟ โรงไฟฟ้า PHES จะทำหน้าที่ในสถานะแบตเตอรี่พลังน้ำไปด้วย ขั้นตอนการทำงานจะเริ่มจากการเก็บน้ำไว้ที่อ่างเก็บน้ำด้านบน ซึ่งจะกลายเป็นพลังงานศักย์เชิงกลที่สามารถนำมาใช้งานได้เมื่อมีความต้องการใช้ไฟฟ้าสูง เมื่อปล่อยน้ำให้ไหลลงมาตามท่อลงสู่อ่างเก็บน้ำด้านล่าง แรงที่เกิดขึ้นจะทำให้กังหันน้ำหมุนและไปขับเคลื่อนเครื่องกำเนิดไฟฟ้า ส่วนในช่วงที่มีความต้องการใช้ไฟฟ้าต่ำ พลังงานส่วนเกินที่ผลิตได้ก็จะถูกใช้เพื่อสูบน้ำจากอ่างเก็บน้ำด้านล่างขึ้นไปสู่ด้านบนอีกครั้ง

หากโรงไฟฟ้าพลังน้ำแบบสูบกลับ หรือโรงไฟฟ้า PHES แห่งหนึ่ง มีกังหันขนาด 400 เมกะวัตต์ 4 ตัว ทำงานต่อเนื่องเป็นเวลา 8 ชั่วโมง โรงไฟฟ้าแห่งนั้นก็จะสามารถผลิตไฟฟ้าได้เพียงพอสำหรับปริมาณการใช้ไฟฟ้าของ 1.6 ล้านครัวเรือนในแต่ละวัน จากข้อมูลของสหพันธ์บริษัทพลังงานไฟฟ้าแห่งประเทศญี่ปุ่น ปี 2558

กลไกการทำงานของโรงไฟฟ้าพลังน้ำแบบสูบกลับ

โตชิบาเป็นผู้นำด้านเทคโนโลยีโรงไฟฟ้า PHES มาอย่างยาวนาน และยังเป็นผู้สร้างความก้าวหน้าให้กับภาคการผลิตไฟฟ้าด้วยการคิดค้นระบบ PHES ที่สามารถปรับความเร็วได้เป็นแห่งแรกของโลก ความสามารถในการปรับความเร็วได้นั้นหมายความว่า ในระหว่างการผลิตไฟฟ้าและการสูบน้ำ พลังงานไฟฟ้าที่ส่งเข้าและออกจากระบบ PHES สามารถควบคุมได้ตามการเปลี่ยนแปลงความถี่ของกริด (Grid) โดยการปรับความเร็วในการหมุนของมอเตอร์เครื่องกำเนิดไฟฟ้าในระบบ PHES ซึ่งเทคโนโลยีโรงไฟฟ้า PHES ที่ปรับความเร็วได้นี้ส่งผลให้การดำเนินงานมีประสิทธิภาพมากขึ้นและระบบโครงข่ายไฟฟ้า หรือ Power Grid มีเสถียรภาพมากขึ้น

อีกหนึ่งเทคโนโลยีคือแบตเตอรี่แบบประจุใหม่ได้ หรือแบตเตอรี่ชาร์จซ้ำได้ (Rechargeable Batteries) ซึ่งเรามักจะคุ้นเคยกันในรูปแบบของแบตเตอรี่โทรศัพท์มือถือ แบตเตอรี่แบบชาร์จซ้ำได้จะไม่ได้กักเก็บพลังงานไฟฟ้าโดยตรงแต่เป็นการกักเก็บเซลล์ไฟฟ้าเคมี โดยเมื่อแอโนดภายในประจุไฟฟ้าขั้วบวกและแคโทดภายในประจุไฟฟ้าขั้วลบถูกแช่อยู่ในอิเล็กโทรไลต์ จะทำให้เกิดปฏิกิริยาทางเคมีและปล่อยกระแสไฟฟ้าออกจากแบตเตอรี่เพื่อปฏิบัติงาน ในทางกลับกัน การชาร์จแบตเตอรี่จะทำได้โดยกระแสย้อนกลับ เมื่อมีกระแสไฟฟ้าจากภายนอกมาทำให้องค์ประกอบเดิมของแอโนดและแคโทดคืนสู่สภาพเดิมก่อนเกิดการใช้งาน จึงสามารถนำแบตเตอรี่กลับมาใช้ซ้ำได้อีก

นอกเหนือจากสองเทคโนโลยีข้างต้นแล้วยังมีเทคโนโลยีกักเก็บพลังงานอีกหลายรูปแบบที่กำลังอยู่ในขั้นตอนของการวิจัยและพัฒนา รวมถึงระบบกักเก็บพลังงานไฮโดรเจน โดยการใช้เซลล์เชื้อเพลิงเปลี่ยนพลังงานไฮโดรเจนและออกซิเจนเป็นพลังงานไฟฟ้า

นวัตกรรมเหล่านี้ทำให้เกิดระบบกักเก็บพลังงานที่มีความหลากหลายและสร้างโซลูชั่นในการรองรับวิถีชีวิตของมนุษย์เราในปัจจุบันที่ต้องพึ่งพิงพลังงานไฟฟ้าเป็นอย่างมาก โดยเฉพาะการรักษาสมดุลระหว่างอุปสงค์และอุปทานการใช้ไฟฟ้า และป้องกันไม่ให้เกิดไฟฟ้าดับหรือขัดข้อง

นอกจากนี้ยังช่วยให้ผู้ประกอบการสามารถควบคุมแหล่งพลังงานที่มีความผันแปรสูงอย่างพลังงานลม และพลังงานแสงอาทิตย์ ได้อย่างมีประสิทธิภาพมากขึ้นอีกด้วย

QR Code
เกาะติดทุกสถานการณ์จาก Line@matichon ได้ที่นี่
Line Image